
 1 

Adapting AMDIS for Autonomous Spectral Identification 
of Hazardous Compounds for ISS Monitoring 

 
Lukas Mandrake, Seungwon Lee, Benjamin Bornstein, Brian Bue 

 
Jet Propulsion Laboratory 

California Institute of Technology 
4800 Oak Grove Drive 
Pasadena, CA 91109 

<firstname.lastname>@jp.nasa.gov 
 

 
Abstract—The stand-alone Vehicle Cabin Atmospheric 
Monitor (VCAM) instrument was designed to provide an 
automated method of monitoring air quality within the 
International Space Station (ISS) via a miniaturized mass 
spectrometer and gas chromatograph system.12 The output 
of the device, a series of mass spectra as a function of time, 
is then processed via our implementation of the Automated 
Mass Spectral Deconvolution and Identification System 
(AMDIS) method from the National Institute for Standards 
and Technology (NIST) to generate potential identification 
with reference to a known library of hazardous chemicals. 
In this paper we discuss the modifications required to the 
AMDIS method for autonomous in-flight operation as well 
as additions beyond the original method. In particular, the 
original AMDIS method contains numerous parameters that 
were intended to be adjusted by an operator during the 
analysis to reduce false positives and adjust sensitivity. We 
have instead implemented solution filtration based on 
elution time and discuss possible arbitration algorithms for 
close similar matches to provide the user with a more 
succinct, single-valued answer. 
 

TABLE OF CONTENTS 

1. INTRODUCTION .................................................................1 
2. BRIEF SYSTEM OVERVIEW...............................................2 
3. LIBRARY OF INTEREST .....................................................2 
4. PEAK DETECTION .............................................................3 
5. PEAK CLUSTERING / COMPOUND GENERATION .............5 
6. COMPOUND IDENTIFICATION...........................................6 
7. ELUTION TIME FILTRATION ............................................7 
8. CONSOLIDATION OF DETECTIONS ...................................8 
9. RESULTS............................................................................9 
10. CONCLUSIONS AND FUTURE WORK...............................9 
11. ACKNOWLEDGEMENTS.................................................11 
REFERENCES.......................................................................11 
BIOGRAPHY ........................................................................12 

1. INTRODUCTION 
The ISS exists as a fragile bubble of life-sustaining 
atmosphere in an otherwise lethal environment. However, 
unlike the large biologically and chemically mediated gasses 
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of Earth, the station must constantly monitor and adjust its 
atmospheric components manually. Besides oxygen 
generation and water vapor sequestration, carbon dioxide is 
physically and chemically adsorbed via silica gel and 
molecular sieves while myriad trace contaminants are 
contained with activated carbon and thermal catalytic 
oxidation [1]. Future spacecraft and station missions already 
planned will require much smaller and more efficient 
systems than those currently employed, making life support 
an area of intense modern study. The importance of this 
research is magnified by the presence of many compounds 
with potential health consequences for airborne exposure 
that are used in functioning devices, experiments, and cargo 
loads aboard the ISS. These compounds can require special 
action to remove them from the crew atmosphere should a 
leak or out-gassing occur or may even trigger an evacuation. 
Biological activity from fungi and bacteria inadvertently 
brought aboard also can produce toxic components. Regular 
air quality checks are performed on sample bags returned to 
Earth, but the need for a fast-response analysis has been 
understood for some time [2][3]. However, many of these 
systems are hard-wired for detection of specific compounds 
during construction, narrowing their applicability should a 
novel event occur. 

NASA’s soon to be launched VCAM device represents the 
first fully autonomous miniaturized gas chromatograph 
mass spectrometer (GCMS) system for flight application 
[4]. While the system will be tuned to a specific group of 
compounds of concern, the generic GCMS system 
implementation permits identification and concentration 
estimation to be made on future contamination within a 
concentration range of 0.01 to 100 parts per million. 
Further, the device’s library may be updated during 
operation aboard the ISS should there be unforeseen mission 
needs such as a novel chemical leak. To process the time 
series of mass spectra generated from the device, the 
Automated Mass Spectral Deconvolution and Identification 
System (AMDIS) algorithm developed by the National 
Institute of Standards and Technology (NIST) [5][6] was 
chosen based on its performance and generally accepted 
reputation among the mass spectrometry community.  
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2. BRIEF SYSTEM OVERVIEW 
Critical Device Parameters 

The VCAM device is a microwave oven sized payload less 
than 30 kg in weight and requiring 70 to 180 W of power 
during operation. It will operate under nominal conditions 
for twelve months until its supply of carrier He and 
calibrants are exhausted, at which point the crew may 
replace the supply tanks and operation may resume. 
Samples will be fed to the device once per day with a 
calibration run once per week. Raw data will be downlinked 
to Earth as well as autonomously processed on-board. 

Gas Chromatograph 

The device’s operational flow proceeds as follows. Air is 
pumped into a charcoal bed called the preconcentrator. 
Many trace chemicals in the air adsorb into this matrix. 
Minutes later, the preconcentrator is gently warmed to 
encourage nitrogen, oxygen, and water to leave the system 
(smaller compounds require lower temperatures to evacuate 
based on boiling point and chemical affinity). A sharp heat 
pulse is then used to drive off remaining gasses while a flow 
of pure He gas carries the outgas products deeper into the 
machine. This puff of gas passes through a 10 meter 
capillary tube (gas chromatographic column) that uses a 
special internal coating to encourage the separation of 
various chemical species by modifying their velocities 
within the tube. Full separation takes 20 minutes. This 
process is the gas chromatography aspect to the machine: 
the separation in time of various air components by mass, 
chemical family, and polarity. 

Mass Spectrometer 

As each component exits the tube, the gas enters the mass 
spectrometer aspect. First it is ionized by an electron beam 
and stored in a magnetic trap. This ionization process does 
not strip all atoms into free ions but instead produces a 
characteristic fractionation pattern of smaller molecular ions 
unique for each particular parent molecule. A voltage ramp 
is then applied to the trap in such a way as to encourage 
those molecular ions with the smallest mass to charge ratio 
to escape first, followed by successively larger mass/charge 
ratios. Each molecular ion is counted as it leaves the trap by 
a channel electron multiplier (CEM) high voltage sensor. 
Fifty such spectra of counts per mass/charge are produced 
per second and averaged to yield a characteristic 
fractionation pattern unique to each compound of interest. 
1200 such average mass/charge spectrum are produced in 
sequence as various gas components escape the gas 
chromatograph (elute) and are processed. Half of these are 
taken at “high gain” (dense ionizing electron beam, more 
ionization) and half at “low gain” (sparse ionizing electron 
beam, less ionization) to encompass a greater range of input 
gas concentration. The resulting 2D dataset can be 
visualized as a grid of ion “counts” where one axis is 
charge/mass and the other is time. Once such a grid is 

produced (one for high gain, one for low), the physical 
device’s work is complete and autonomous software takes 
over to determine compound presence, identity, and 
concentration. It should be noted that the raw output of the 
device is not mass calibrated, that is 4096 channels of 
unknown mass/charge are output. An autonomous mass 
calibration algorithm developed by Lee [7] performs this 
mapping before any autonomous identification begins. 

3. LIBRARY OF INTEREST 
The VCAM instrument has a software-defined library of 
compounds of interest stored internally. This library is used 
to identify potential compounds and to determine their 
concentrations. Table 1 shows the compounds originally 
specified for VCAM’s launch, though these can be modified 
via upload at any time. The spectra for these compounds 
were taken from the NIST spectral database [8], a generally 
accepted industrial standard, while all other library-specific 
information (elution time and concentration coefficients) 
must be produced on a VCAM-like instrument on the 
ground. 

Nature generates fractional values of mass/charge via 
multiple ionization and mass defect effects. The NIST 
spectral database, however, uses integer bin resolution for 
the mass/charge ratios of all its compound records. VCAM 
internally measures 4096 channels of mass/charge 
information, but these are folded down to 400 1-AMU 
channels to be compatible with the NIST database. The 
relative peak heights for each compound are stored as 
numbers between 0 and 999, normalized to the highest peak 
of each spectrum. 

Table 1. Compounds of Interest 

Compound CAS 
1,2-dichloroethane 107-06-2 
1,2-propylene glycol 57-55-6 
1-butanol 71-36-3 
2-butanone 78-93-3 
2-propanol 67-63-0 
4-methyl-2-pentanone 108-10-1 
acetaldehyde 75-07-0 
acetone 67-64-1 
benzene 71-43-2 
C5 aldehyde (pentanal) 110-62-3 
C5 alkane (pentane) 109-66-0 
C6 aldehyde (hexanal) 66-25-1 
C6 alkane (hexane) 110-54-3 
carbonyl sulfide 463-58-1 
chloroform 67-66-3 
dichloromethane 75-09-2 
ethanol 64-17-5 
ethyl acetate 141-78-6 
ethyl benzene 100-41-4 
fluorobenzene 462-06-6 
freon 11 75-69-4 
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freon 113 76-13-1 
furan 110-00-9 
hexamethylcyclotrisiloxane 541-05-9 
isoprene 78-79-5 
limonene 138-86-3 
m-xylene 108-38-3 
octamethylcyclotetrasiloxane 556-67-2 
o-xylene 95-47-6 
perfluoropropane 76-19-7 
p-xylene 106-42-3 
toluene 108-88-3 
vinyl chloride 75-01-4 

To understand how difficult unique identification of all 
entries within this library will be, a graph versus mass 
channel (AMU) was created where the y axis displays the 
ad-hoc “discrimination” D for a channel m 

, 

where Ntotal is the total number of library compounds (33 in 
our case) and N(m) is the number of compounds which have 
a non-negligible spectral component at channel m (I(m) > 
5% of maximum peak). Thus, D(m) of zero indicates all 
compounds possess contributions at channel m removing 
most of that channel’s discriminatory utility for 
identification, while D(m) of 1 indicates only a single 
compound utilizes this channel providing ideal 
discrimination. D(m) is treated as undefined if N(m) is zero. 
Figure 1 shows D in blue for our particular library as well as 
a running average in red. Note that higher masses are far 
more discriminatory than lower masses with zero or near 
zero discrimination possible atop masses 28 and 32 due to 
omnipresent air peaks leaking into the mass spectrometer 
chamber (vertical bars in Figure 2). Superimposed on this 
graph is a quadratic mass weight term (M/MMAX)2 in 
preparation for Section 6.  

 

Figure 1. Channel discrimination as a function of mass. 
Higher masses are more uniquely identifying. 

4. PEAK DETECTION 
Figure 2 shows an example ion count grid (with 
mass/charge ratio on the horizontal and time on the vertical. 
Note first the persistent peaks at 28, 32, and 44 AMU. These 
are ionized N2, O2, and CO2 molecules, the basic 
constituents of our atmosphere. They continually leak into 
the measurement chamber to some degree, causing a 
persistent signature that must be removed from analyzed 
spectra. We next note that at certain times structure 
suddenly emerges along the Mass/charge axis as a series of 
peaks. These are the mass spectra/fragmentation patterns for 
individual gas components as they elute from the gas 
chromatograph.  

Though this grid of ion counts is the basic, raw data, a 
human analyst more often looks at two derived products: the 
total ion current (TIC) chromatogram, which sums the 
contribution of all mass/charge components into a single 
trace versus time (Figure 3), and a mass/charge spectra in 
the centroid time of an elution event, often as determined in 
the TIC. All three of these products (raw ion count grid, 
TIC, and mass spectra) are considered by the AMDIS 
method. Our implementation will be herein referred to as 
JPL AMDIS to distinguish it from the version available 
directly from NIST. 
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Figure 2. Molecular Ion log(Count) grid. Time = 0 is at 
the top of the y axis, while smaller mass/charge rations 
are to the left. A log scale has been used to enhance 
contrast of small peaks for display only. 

 

Figure 3. Total Ion Current (TIC) summed across all 
mass channels. Note the log y axis. 

Estimating Noise 

Our first task in autonomously simulating a human analyst 
is to examine the 2D count grid and identify the elution 
events (times when gas components exit from the 
chromatograph) for further study. The AMDIS method 
refers to this as peak extraction. Peak identification is 
achieved by first computing the “noise factor” Nf which is a 
unitless measure of the ambient noise well away from all 
peak events [6]. This factor is the ratio of the observed 
signal fluctuation to the square root of the mean signal 
strength (the expected noise a CEM generates). The 
observed signal fluctuation is obtained by counting the 
number of times a signal oscillates about its mean in a given 
window (12 time samples) and then taking the median 
absolute value of the observed deviation. Each window thus 
measured produces a sample Nf. This process is repeated 
once for the TIC and once for each mass channel using only 
windows that have no zero ion counts at any time and also 
cross their own mean value more than 1/3 of their length (at 
least 4 times). This ensures that neither peak events nor data 
sparse channels corrupt the Nf value. Finally, the median of 
all candidate Nf values is taken as the representative Nf for 
the entire dataset. It typically ranges from 0.8 to 5.0 in our 
experiments with 0.83 for the case shown in Figures 2 and 
3. 

Cataloging Peaks 

Once a noise estimate is calculated, we may go about 
determining the location of all “relatively significant” peaks, 
that is, those that are high enough above the ambient noise 
to be considered elution events. The AMDIS method does 
this once using the TIC to capture low-concentration 
components that might not have strong individual channel 
traces, and once for each mass channel independently for 
single peak compounds that might have weak TIC 
signatures. These results are appended to form a master 
peak list. 

To determine if a peak is suitable, it first must satisfy a 
variety of conditions. The full procedure is complex, but the 
rules may be summarized: 

1) It must be an absolute peak (larger than immediate 
neighbors) 

2) The total width of the peak must be greater than 3 
time samples. Calculating this width is itself a 
complex process. 

3) The relative peak height must be ~230% higher 
than the (surrounding background + anticipated 
background noise at peak height) if the peak is the 
narrowest permitted but only 30% higher if the 
peak is the broadest permissible. 

4) The peak must have a sufficient maximum rate 
(slope) compared to the expected noise fluctuation 
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based on the maximum peak signal, i.e. there must 
be at least one sharp rise somewhere on the peak 
that cannot be explained by noise. 

At the end of the peak extraction procedure we obtain a list 
of hundreds of peaks that exist in the TIC or an individual 
mass channel. Each individual elution event will usually 
generate several peaks: one for each major mass/charge line 
and one in the TIC.  

5. PEAK CLUSTERING / COMPOUND GENERATION 
Armed with a sea of potentially significant peaks, we must 
now decide which peaks likely belong to the same 
compound and produce a mass spectra for each potential 
compound found. In simple cases this is trivial: simply 
gather “nearby” peaks in time together across all mass 
channels and call their appropriately normalized relative 
amplitudes the mass spectra. In more complex cases this 
procedure has two significant flaws. First, it assumes that 
each elution event is well separated in time, but coelution 
events can frequently occur (note the coelution event in 
Figure 3 around time 25-30), causing observed contribution 
peaks from one peak to be merged with the another. Second, 
the mass spectra can be affected by background bias with 
large but meaningless peaks added into the true spectrum 
such as from persistent chemicals leaking into the 
measurement chamber. We desire a more robust procedure 
than naïve single-time mass spectra extraction. 
  
A more reliable method begins with the physical 
observation that every unique compound that elutes has a 
characteristic elution curve in time (Figure 4). Even when 
two compounds are nearby each other, these rise and set 
times help to identify signals on different mass channels 
originating from the same compound. AMDIS harnesses 
this observation in two ways: by clustering peaks which 
maximize at precisely the same time, and by constructing a 
mean model for each potential compound which is then used 
to extract a more precise mass spectra. 
 
Peak Maximization Clustering 

For model-building process, a parabola is fit to each peak 
and its two nearest neighbors to calculate a more precise 
estimate of the maximization time to 0.1 timestep 
resolution. Then, by the method of Colby [9], we calculate a 
maximum sharpness S for the slope of each peak over the 
entire peak extent window relative to the expected peak 
noise given by 

. 

 

 
Figure 4. Peak shapes for the 3rd through 7th peaks in 
the TIC of the example in Figure 3 with the beginning of 
the peaks aligned. Note the different shapes and rise/set 
times. 

 where In is the intensity at a given index n (n=0 is the peak 
value) and Nf is the noise factor. These max sharpness 
values (one per peak) are added to an array of bins each 
representing 0.1 timesteps. Local maxima within this 
sharpness array are then used to detect candidate 
compounds, with compounds suppressed within an 
empirically derived range about each major compound 
candidate. The sharpest peak within a locally maximum bin 
is called the “dominant peak” of the compound, and any 
peaks with sharpnesses found to be within 75% of the 
sharpest peak that also maximize within the suppression 
window are added as contributing peaks. 

Note that peaks detected in the TIC are a special case: as 
they have no relation to mass channels, they are added 
directly as potential compounds without further entries in 
their contributing peak list. 
 
Compound Model / Mass Spectra 

An average run generates a handful to dozens of potential 
compounds, each with a list of contributing peaks. The next 
step is to determine a mass spectrum for each which is 
achieved by constructing a model shape. The contributions 
of each peak, after suitable normalization and background 
subtraction, are averaged together to generate a model in 
time M(n). TIC contributions simply use the normalized 
shape of the TIC itself in the window of interest. These 
models are then fit to every mass channel individually using 
the least-squares method described by Dromey [5] by the 
equation 
 

, 
 
 
where a and b represent an uninteresting linear background 
and c is the projection of the mean model on the current 
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mass channel. Taking all positive c and normalizing the 
largest peak to the standard NIST intensity range of 0 to 
999, the mass spectrum for this compound is ready to be 
compared to the NIST library. It should be noted that the 
AMDIS method available from NIST includes the capability 
of fitting multiple models M(n), N(n), O(n) and so on to a 
single peak in the hopes of assisting deconvolution of 
coelutions. Due to resource constraints and desire for 
simplicity, we chose not to implement this feature and 
instead maintain a single-model resolver. 
 
At this point quality control flags may also be recorded for 
each of the associated peaks within the spectrum. AMDIS 
notes several potential problems: 
 

1) If the peak modeled by I(n) above represents less 
than ~25% of the total signal (i.e. a bad match to 
M(n)) the mass peak is rejected as not part of the 
spectra 

2) If the peak has signal less than 3 times the expected 
noise at the peak maximum, it is flagged as a 
possible noise peak and downweighted in the 
identification step. This penalty (Wpenalty) is 
expressed as a value from 0 (unpenalized) to 99 
(maximally penalized) depending on peak height. 

3) If the peak modeled by I(n) represents less than 
~50% of the total signal the peak is downweighted 
as likely background similar to (2). 

This procedure ends with a list of perceived compounds 
with associated mass spectra and quality control flags for 
each peak if necessary. The identification step compares 
these compounds with those within our library. An optimal 
example is shown in Figure 5 for a 1-butanol observation. 
The violet spectrum is the raw data directly from the VCAM 
instrument centered at the peak maximum. The dark 
superimposed lines are those peaks AMDIS found that were 
closely associated via peak maximization clustering. The 
green spectrum is 1-butanol from the NIST spectral library.  

6. COMPOUND IDENTIFICATION 
Identification is the procedure of matching each perceived 
candidate compound with a library entry (or none if badly 
matched with all). Each compound is matched individually, 
independently of any other perceived compounds in the run. 
While this does not utilize all of the intuition available to a 
human operator (acetone always elutes after pentane but 
before 1-butanol, for instance), our later use of elution time 
filtration recaptures much of such time ordered information. 

 

 

Figure 5. Sample 1-butanol spectrum. Violet = raw data. 
Grey superimposed = AMDIS clustered peaks. Green = 
NIST library. 

In both NIST and JPL AMDIS, a compound is first 
subjected to a preliminary screening based on a simple dot 
product to establish general similarity between spectra: 

, 

where the sums over i range over the (at most) four largest 
peaks of the current library entry to compare (N<5). Li is the 
height of the ith library peak, Mi is the mass, and U[M] is the 
height of the unknown compound as a function of mass 
(grey spectrum in Figure 5). In both user records and library 
records, peaks are ordered by their height such that the most 
significant peaks are compared first. Note that both U and L 
have been normalized such that their largest respective 
peaks are equal (in our case, 999). S represents the cosine 
squared of the “angular distance” between vectors L and U 
in the space of the four largest peaks of L. AMDIS requires 
S to be less than 0.4; otherwise, the compounds are seen to 
be too different for consideration and the library entry is 
rejected. This initial screen can introduce false negatives 
(missed identification) should the mass calibration be off by 
more than 0.5 AMU for any dominant library spectra peaks. 

For those library entries remaining after the initial 
screening, we compute a match factor (mf) that measures 
more thoroughly any spectral similarities. AMDIS includes 
three separate match factors and one amalgam that we 
utilize in JPL AMDIS. All match factors range from 0 to 
100. 

The “simple” match factor follows a library spectrum and 
computes the dot product against the unknown spectrum. 
Note that there could be sizeable peaks in the unknown 
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spectrum that are not sampled by this factor as they have no 
counterpart in the library spectrum. 

 

where N is now the total number of peaks in the library 
spectrum, Li is the height of the ith library peak, Mi is the 
mass of the ith library peak, and U is the height of the 
unknown compound as a function of mass. 

The “weighted” match factor includes a weighting factor for 
peaks at higher masses as being more unique or relevant. In 
our library, this consideration is certainly true (Section 3). It 
also reduces the penalty on library peaks that are not present 
in the unknown spectrum. 

. 

Here αi is a penalty reduction term equal to 0.5 for peaks 
not present (nonzero) in the user spectrum and 1 for those 
that are. βi is a penalty term which is zero for flagged peaks 
(in the unknown spectrum) and 1 for unflagged peaks.  

The “reverse” match factor is precisely the same as the 
“weighted” factor except that βi is now replaced with a more 
sophisticated penalty based on the Wpenalty quality flag 
determined during the compound model building step: 

. 

These three match factors are finally combined in a complex 
way (beyond the scope of this paper) taking into additional 
account compound purity (total signal fit by the compound 
model), the number of common peaks between the unknown 
and library compound, the estimated noise at the peak of the 
compound, and whether the peak was taken from the TIC. 
The final number is referred to as the “Net” match 
representing a goodness of fit to a particular library entry. 

7. ELUTION TIME FILTRATION 
Until now, we have only utilized our knowledge of mass 
spectra to assist in the identification of candidate 
compounds. However, as shown in Section 3, there are 
many compounds whose fractionation patterns are 
extremely similar: shifted by a single mass, subsets of 
another more complex pattern, or different only by relative 
abundance ratios. To assist our identification, we take 
advantage of the fact that various compounds elute at 
different, predictable times. This is the gas chromatography 

aspect of VCAM, and in principle it is possible to identify 
compounds solely upon their elution time. In our case, we 
will utilize this additional information to narrow the 
possible candidates before identification is complete. This 
logic extends the NIST AMDIS method beyond its typical 
configuration. 

Our implementation is simple and efficient: windows of 
possibility are defined for each library entry. For each 
compound identification event, only the subset of the library 
known to be available at the time of the unknown compound 
is considered. This top-hat probability distribution is 
appropriately draconian in its removal of distant 
compounds, but care must be taken not to accidentally 
eliminate nearby candidates. In fact, these windows must be 
made to overlap due both to co-eluting compounds 
(compounds that are emitted at roughly the same time) and 
to account for run-to-run variability in elution time (a noise 
process). Addition of elution time filtration reduces false 
positive detection by up to 95% and greatly facilitates 
deciding between structurally similar compounds with 
separated elution times. 

A common chromatographic measure of elution time is the 
Kovats Retention Index (RI) [10]. This is a unitless measure 
relative to the n-alkanes with logarithmic interpolation. 
However, our attempts to extract reliable values for RI from 
the NIST library were fraught with disagreement between 
sources. We instead elected to implement the above 
algorithm based on relative time (minutes) from a fixed 
point during the VCAM measurement cycle summarized in 
Figure 6. To show areas where many compounds share 
similar elution times, Figure 7 was produced as a histogram 
of Figure 6 using 20 second bins. Note the large number of 
compounds at the beginning of the run; this initial rush 
proves to be very challenging to an elution time filtration 
method since, in our case, up to seven compounds may have 
overlapping potential identification regions. The size of 
acceptance window for a compound is not precisely defined 
mathematically, being a function of peak width, run-to-run 
elution time variability which varies for each compound, 
and the precise point in a peak that AMDIS selects as the 
true maximizing event based on peak shape models and 
least squares fitting. The elution time windows used in this 
report were the “worst case” windows made by selecting the 
left-most part of any peak ever observed for a particular 
compound and the similar right-most part of any peak ever 
observed. Thus, these windows are very wide, permissive, 
and not as discriminatory as could be imagined. Hand-
trimming of elution time acceptance windows on a given 
test dataset will permit significant improvement in the 
elution time filtration method’s ability to resolve especially 
early eluters and will be performed as a final tuning step in 
VCAM’s development. 
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Figure 6. Elution times for each library entry in minutes 
with uncertainty estimate (acceptance width). 

 

Figure 7. Number of compounds with near elution times. 

8. CONSOLIDATION OF DETECTIONS 
A typical run such as is shown in Figure 3 can generate 
several identifications for each visible peak in the TIC. 
Table 2 shows a complete list of detections for the example 
run including multiple detections, while Figure 8 shows the 
same results graphically. One of these peaks originates from 
TIC analysis and the other from mass channel components. 
One simple algorithm to filter these results for human 
consumption might examine overlapping windows and take 
only the highest Net Mf for identical compounds, which in 
this case would clean the list completely of redundant 
detections. Similarly, reporting only those detections with 
the largest extracted counts (area beneath peak) would tend 
to dismiss smaller fragmented detections due to noise. More 
troublesome situations may arise, however, in which 
misidentifications are mingled with correct identification at 
various match factors. While it is tempting to produce 
algorithms to try and detangle such situations, it was 
decided for the sake of completeness to downlink the raw 
output of JPL AMDIS to the ground for human inspection. 
Considering that we will likely never pursue more than a 
handful of compounds in any one run, it is not onerous to 
require a human to consider multiple returns. 
 
As the VCAM instrument has varying degrees of sensitivity 
to the contents of our library, the current VCAM hardware 
implementation operates at two gain settings (ionization 
current). Each run includes a low and high gain 
simultaneous measurement. Some compounds may be seen 
in both high and low gain equally well, while others may be 
saturated in high gain or have negligible signal in low gain. 
Such a system offers another consolidation challenge, for 
false detections in the high gain are numerous due to 
saturation events. One proposed method would restrict 
certain compound identifications and quantifications to only 
be valid in one gain setting, low or high, or to require 
successful detection be found in both. However, these 
consolidation methods are not currently scheduled to be 
implemented for launch. 
 
The final step of JPL AMDIS feeds results such as those in 
Table 2 into a post-processing algorithm [11] that computes 
concentration based on integrated TIC counts given a 
correct identification of the compound and the window in 
time over which it elutes. This logic is an extension beyond 
the NIST AMDIS process and is discussed thoroughly in 
Lee’s accompanying paper. 
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Table 2. Example Run Output 
Compound 
Detected 

Elution 
Time 

Width Domnt 
Peak 

(AMU) 

Mf 
Net 

perfluoropropane 28 6 TIC 58.7 
perfluoropropane 28 5 102 26.1 
freon 11 34 5 TIC 67.4 
freon 11 34 5 102 67.2 
acetone 63 9 TIC 79.1 
2-butanone 100 8 TIC 78.4 
2-propanol 125 5 45 55.3 
2-propanol 128 7 45 51.8 
toluene 227 6 TIC 83.9 
1,2-dichloroethane 256 5 TIC 74.7 
1-butanol 322 6 56 82.3 

9. RESULTS 
As of this paper, the results for the final validation and 
verification of the VCAM instrument are not available. 
However, results from a preliminary validation set have 
been analyzed for the purposes of documenting the JPL 
AMDIS code performance. Results listed here are not 
intended to represent the eventual capability of the VCAM 
instrument or its performance aboard the ISS, as substantial 
machine tuning will have occurred between these results 
and the final launch system. 
 
Five physical bags containing mixtures of the 33 
compounds specified in Section 2 were prepared and 
analyzed at four concentrations with three repetitions each 
for statistical sampling. A calibration run using 
fluorobenzene, acetone, perfluoropropane, and air [7] was 
performed before each set of 12 runs for an individual bag 
to ensure proper mass calibration. Figure 9 shows our 
preliminary identification results. For the experimental run 
reported here, 1,2-propylene glycol, carbonyl sulfide, and 
hexamethylcyclotrisiloxane were not available for testing 
and are shown in grey. The xylenes (m, p, and o) were 
collapsed to a single xylene entry due to identical mass 
spectral fragmentation patterns differing only by slight 
relative heights. 
 
On the whole, our identification averaged 90% correct. Of 
the errors, 30% were due to isoprene, 12% respectively to 
octamethylcyclotetrasiloxane (OMCTS) and hexane, and 
9% to pentanal with the remainder scattered across the other 
compounds. We will briefly document the challenging 
compounds now as examples of failure modes. 
 
 For isoprene, it was later shown a coelution with hexane at 
1/100th the signal intensity of hexane made it invisible on 
the TIC trace and extremely difficult to detect in the mass 
channel regime. This lead not only to misidentification as 
hexane but missed events, subsumed by the larger peak. 
Later adjustments were made to enhance VCAM’s 
sensitivity to isoprene. 

OMCTS was sometimes misidentified as toluene due to the 
very high mass of its parent peak (281 AMU). Any initial 
mass calibration error is magnified via extrapolation from 
the highest calibration mass of 169 AMU 
(perfluoropropane) resulting in a poor fit. As only toluene, 
chloroform, or perhaps4-methyl-2-pentanone have elution 
times overlapping OMCTS, toluene is the closest next 
match and can compete with OMCTS should its parent peak 
be very shifted. The AMDIS algorithm is currently being 
modified to include a mass folding capability to desensitize 
results from mass shifts at such very high masses. 
 
Hexane was misidentified as pentane twice and isoprene 
twice. The isoprene misidentification is due to the same 
observation as for isoprene’s difficulties: a real isoprene 
component was present at very low signal, superimposed on 
hexane nearly perfectly. Given that their elution windows 
overlap substantially, it becomes a competition between 
their respective match factors as to which will be reported. 
The pentane misidentification results from the nearly 
identical spectra of pentane and hexane as well as their 
overlapping elution windows. In some high-concentration 
samples, pentane can produce additional peaks in its 
fragmentation pattern above its parent peak and resemble 
hexane through this saturation mechanism. The difficulty 
separating pentane and hexane may be aided by hand-
trimming of the elution windows of acceptance for the final 
device tuning. 

10. CONCLUSIONS AND FUTURE WORK 
The JPL AMDIS method is a robust algorithm now 
packaged as part of the VCAM instrument to fly aboard the 
ISS to determine atmospheric constituents. The ability to 
self-calibrate mass scale, filter results by absolute elution 
time, and calculate atmospheric concentration in ppm was 
added to the NIST AMDIS algorithm to support flight 
requirements as well as tuning the algorithm parameters to 
VCAM data requirements. All 33 required compounds were 
successfully identified across a range of concentrations and 
mixtures. 
 
There are many extensions of the current algorithm that 
should be noted for future application. Some are easy to 
implement while others will require substantial statistical 
research. 
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Figure 8. Results from a JPL AMDIS run. Detections are listed above Y=0, while known, injected compounds are 
shown below Y=0. Note the multiple hits on each peak. 

Library Preprocessing 
 
Currently, a mass squared weighting term assists the 
weighting of higher mass observations as more uniquely 
identifying; however, this is a gross approximation for any 
general library of interest that may or may not represent any 
given library. A pre-processing step could examine the 
current target library extracting useful information on peaks 
that are unique to certain compounds or uselessly common 
to all (see Figure 1). This information could then be fed as a 
series of weights to the compound identification code to 
assist its selection in a natural analogy to how human 
operators often make their determination e.g. “I see mass 
169, it must be perfluoropropane.” In our case, any 
substantial signal in mass channels above 150 could be 
taken as irrefutable proof of small sets or even uniquely 
identified compounds without additional computation, while 
a n-order mass term (empirically fit and likely much larger 
than second order) would be more appropriate for the range 
20 to 150. Further, this process could be powerfully used to 
tease out coelutions between compounds in which only one 
has very high mass components, as these could be used 

exclusively in the model-building process improving the 
peak clustering / compound spectral building process. 
 
Simultaneous Compound Identification 
 
The current system identifies each compound individually 
without concern for the presence of any other compounds 
found in the run so long as their elution times are within a 
window of acceptance. This process could be instead placed 
into a simultaneous matrix that could benefit from known 
ordering information on a much finer resolution than simple 
elution time windows. For examine, hexane and pentane 
have well defined, overlapping windows of acceptance, but 
empirical runs have shown that should both be present in a 
run they always occur in the order pentane then hexane. 
Human operators commonly use such ordering intuition 
during difficult identifications. Such a matrix could be 
formulated in a least-squares manner analogous to the 
model fitting step, replacing the current highly empirical 
algorithm of peak clustering, peak flagging, initial 
screening, and match factor calculation. Substantial 
improvement in reduction of redundant output and low-
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score misidentification could be thus obtained without the 
need for further ad-hoc filtration based on match factors. 

 
Figure 9. Percent correct ID for library species. Xylenes 
have been collapsed to single entry. Greyed out 
compounds were not present. 

Bayesian Approach 
 
Perhaps most powerfully, the addition of Bayesian theory 
could determine an actual probability distribution of identity 
over the target library (instead of an ad-hoc match factor of 
unknown physical interpretation) to help determine more 
useful output in truly ambiguous cases in which two 
solutions are nearly equally likely. The current NIST 
AMDIS implementation will simply randomly choose 
between two equally valid solutions. Large signals which do 
not well correspond to any library compound could also be 
thus recognized and treated specially. Such behavior would 
be very advantageous to a truly autonomous system that 
must prepare for unknown future events and still gracefully 
report useful observations. 
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